MicroTech Systems, Inc. Engineering Wet Process Solutions

Call us Toll Free 877.298.9562

About Mt systems Inc

An acknowledged leader in the engineering, manufacturing and support of wet process and chemical distribution equipment as well as on-site service, repair and maintenance.

 

Headquarters:

MT Systems Inc.
580 Cottonwood Drive
Milpitas, CA 95035

Tel: (510) 651-5277
Fax: (510) 651-3374

Contact Us

Partner with Us


MicroTech Office Location - Fremont, CA

MEMS Technology and Commercial Market Opportunities

What is MEMS Technology?

Micro-Electro-Mechanical Systems, or MEMS, is a technology that in its most general form can be defined as miniaturized mechanical and electro-mechanical elements (i.e., devices and structures) that are made using the techniques of microfabrication. The critical physical dimensions of MEMS devices can vary from well below one micron on the lower end of the dimensional spectrum, all the way to several millimeters. Likewise, the types of MEMS devices can vary from relatively simple structures having no moving elements, to extremely complex electromechanical systems with multiple moving elements under the control of integrated microelectronics.

The one main criterion of MEMS is that there are at least some elements having some sort of mechanical functionality whether or not these elements can move. The term used to define MEMS varies in different parts of the world. In the United States they are predominantly called MEMS, while in some other parts of the world they are called “Microsystems Technology” or “micromachined devices”.

Over the past several decades MEMS researchers and developers have demonstrated an extremely large number of microsensors for almost every possible sensing modality including temperature, pressure, inertial forces, chemical species, magnetic fields, radiation, etc. Remarkably, many of these micromachined sensors have demonstrated performances exceeding those of their macroscale counterparts. That is, the micromachined version of, for example, a pressure transducer, usually outperforms a pressure sensor made using the most precise macroscale level machining techniques.

Not only is the performance of MEMS devices exceptional, but also their method of production leverages the same batch fabrication techniques used in the integrated circuit industry – which can translate into low per-device production costs, as well as many other benefits. Consequently, it is possible to not only achieve stellar device performance, but to do so at a relatively low cost level. Not surprisingly, silicon based discrete microsensors were quickly commercially exploited and the markets for these devices continue to grow at a rapid rate.

The real potential of MEMS starts to become fulfilled when these miniaturized sensors, actuators, and structures can all be merged onto a common silicon substrate along with integrated circuits (i.e., microelectronics). While the electronics are fabricated using integrated circuit (IC) process sequences (e.g., CMOS, Bipolar, or BICMOS processes), the micromechanical components are fabricated using compatible “micromachining” processes that selectively etch away parts of the silicon wafer or add new structural layers to form the mechanical and electromechanical devices. It is even more interesting if MEMS can be merged not only with microelectronics, but also with other technologies such as photonics, nanotechnology, etc. This is sometimes called “heterogeneous integration.” These technologies are filled with numerous commercial market opportunities.

510.651.5277

Monday - Friday 8am - 6pm PST

 

 

© 2000 - 2024    MT Systems Inc.